The Committee on Taxonomy, chaired by Patricia Rosel, produced the first official Society for Marine Mammalogy list of marine mammal species and subspecies in 2010. Consensus on some issues has not been possible; this is reflected in the footnotes. The list is updated at least annually.

This version was updated in July 2017. This list can be cited as follows: “Committee on Taxonomy. 2017. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].”

This list includes living and recently extinct (within historical times) species and subspecies, named and un-named. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. An un-named subspecies is included if author(s) of a peer-reviewed article provided a sound scientific argument for the taxon (see Taylor et al. 2017) and stated explicitly that the form is likely an undescribed subspecies. The Committee omits some described species and subspecies because of concern about their biological distinctness; reservations are given below. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses the species was originally described in a different genus. Classification and scientific names follow Rice et al. (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two frequently used names in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/. Species are listed in alphabetical order within families.

The list includes a number of recently described subspecies for which the descriptions did not meet all of the requirements for name availability (for use or non-use) for species-group names (which included subspecies names) under the International Code of Zoological Nomenclature (ICZN 1999) that were described after 1999. This includes cases where the author(s) of the subspecies used a name previously used for a species (e.g., Megaptera novaeangliae kuzira, for which Jackson et al. (2014) used a name originally used by Gray in 1850 in Megaptera kuzira, now considered a synonym of M. novaeangliae). The authors are urged to remedy such deficiencies, by republication with the required information, which includes designation of holotype or syntype specimen(s), identification of the repository of the specimen(s), and explicit identification of the taxon as new by inclusion of a term such as “ssp. nov.” The new work and names should be registered with Zoobank. The year of the name will then be the year in which all the requirements have been met in a new publication. See details in Chapter 4 of the Code (Criteria of Availability).

Five recent papers suggest that new species- or subspecies-level taxonomic actions may be proposed shortly, for the fin whale (Archer et al. 2013), Bryde’s whale (Rosel and Wilcox 2014), Baird’s beaked whale (Kitamura et al. 2013, Morin et al. 2016) and the South Asian river dolphin (Braulik et al. 2014). These will be evaluated and addressed in future updates of the list.

Based on molecular and morphological data, the cetaceans fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti provisionally as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved — e.g., see Spaulding et al. 2009, Price et al. 2005; Aagnarsson and May-Collado, 2008). Below the rank of order, we list only families, genera, species and subspecies, omitting superfamilies, subfamilies and taxa of other ranks. Consistent with the use of Cetacea as an un-ranked unit, we also include the un-ranked taxon Pinnipedia. Morphological (Wyss and Flynn, 1993; Berta and Wyss, 1994) and molecular (Higdon et al. 2007; Fulton and Strobeck, 2010, Nyakatura and Bininda-Emonds 2012) analyses provide strong support for pinniped monophyly and hence inclusion of Pinnipedia as an un-ranked taxonomic unit. However, there is continued debate on this subject as Koretsky et al. (2016) argue the case for a diphyletic origin for pinnipeds.

For pinnipeds, we previously followed Berta and Churchill (2012). To avoid issues of paraphyly, these authors proposed that, based on molecular and morphological data, the genus Arctocephalus be limited to Arctocephalus pusillus, the type species of the genus Arctocephalus, and transferred the remaining ‘Arctocephalus’ species (i.e., A. australis, A. galapagoensis, A. gazella, A. philippii and A. tropicalis) to Arctophoca Peters, 1866. However, Nyakatura and Bininda-Emonds (2012) compiled a new supertree of the Carnivora and concluded that this usage of Arctophoca may be premature because of remaining uncertainty about phylogenetic relationships, and we return provisionally to use of Arctocephalus for all the southern fur seals.
Four subspecies of *A. australis* were formerly listed here: *A. a. australis*, *A. a. forsteri*, *A. a. gracilis* and *A. a. unnamed* (proposed by Berta and Churchill 2012). However, Oliveira and Brownell (2014) synonymized *A. a. gracilis* with *A. a. australis*. The super-tree analysis by Nyakatura and Bininda-Emonds (2012) accords with the phylogenetic analysis of Higdon (2007), suggesting that the New Zealand fur seal should be recognized as a full species, *A. forsteri*. Two subspecies of *A. philippii* are thought to be biologically distinct: *A. p. philippii* and *A. p. townsendi*, although small sample sizes and a small number of genes sampled are concerns. Two subspecies of *Eumetopias* are supported largely on molecular genetic data, which is also the case for recognition of California, Japanese and Galapagos sea lions as separate species. Bruner (2004) advised use of *Otaria byronia* (Blainville, 1820) over *O. flavescens* (Shaw, 1800). See Webber (2014) for summary of why *O. flavescens* is a nomen dubium and should not be used under the provisions of the International Code of Zoological Nomenclature (ICZN 1999). However, many South American scientists continue to use *O. flavescens*.

Lindqvist et al. (2009) concluded that a purported third subspecies of the walrus *Odobenus rosmarus laptevi* is not warranted.

Recent molecular genetic analyses indicate that *Phoca vitulina concolor* is paraphyletic and this along with lack of morphological differentiation suggests that the western Atlantic subspecies is not supportable; *P. v. vitulina* is considered here to apply to all Atlantic harbor seals. Within the North Pacific, until the subspecies limits of various populations are assessed, only a single subspecies is recognized, *Phoca vitulina richardii*. Placement of the ringed seal, Caspian seal and Baikal seal has alternated between the genera *Phoca* and *Pusa*. We accept Rice’s (1998) use of *Pusa* as the correct classification. Scheel et al. (2014) found the Caribbean and Hawaiian monks to be more closely related molecularly and morphologically to each other than either is to the Mediterranean monk seal and created the new genus *Neomonachus* for the two species.

The long-lost holotype skull of the gray seal *Halichoerus grypus* has been rediscovered and shown by DNA analysis to hail from the Baltic rather than from Greenland as previously thought (Olsen et al. 2016). Consequently, the nominate subspecies *H. g. grypus* is the Baltic gray seal, *H. g. macrorhynchus* falls into synonymy, and the authors have resurrected *H. g. atlantica* to apply to the Atlantic subspecies.

Derocher and Stirling (1998) argued convincingly that patterns of variation in the polar bear do not support recognition of subspecies, and they have been deleted here.

The use of *Lontra* rather than *Lutra* for the marine otter follows Larivière (1998) in recognizing the otters of North and South America as a monophyletic taxon distinct from the otters of Eurasia.

In the mysticete cetaceans, molecular evidence strongly supports the recognition of three separate phylogenetic species of right whales (Rosenbaum et al. 2000; Gaines et al. 2005). In addition, the genus *Eubalaena* (rather than *Balaena* as in Rice, 1998) is retained for the right whales as recommended by the Scientific Committee of the International Whaling Commission (IWC, 2002).

New fossil evidence suggests that *Caperea marginata* may be a member of the family Cetotheriidae (Fordyce and Marx 2012; Marx and Fordyce 2014; Marx and Fordyce 2016). *Neobalaenidae* is retained here provisionally.

Jackson et al. (2014) have recognized three subspecies of the humpback whale based on mitochondrial and nuclear DNA relationships and distribution: *Megaptera novaeangliae kuzira* (North Pacific), *M. n. novaeangliae* (North Atlantic) and *M. n. australis* (Southern Hemisphere).

All Bryde’s whales are provisionally considered to comprise a single species, *Balaenoptera edeni*, following the usage of the IWC (IWC 2002, 2008), Kato and Perrin (2009), and Kershaw et al. (2013). However, Luksenburg et al. (2015) accepted two species. Some workers recognize *B. edeni* as including only the small-form coastal Bryde’s whales of the western Pacific and Indian Oceans, using *B. brydei* for the globally distributed larger more oceanic form (Sasaki et al. 2006). Kato and Perrin (2009) and Kershaw et al. (2013) considered these more likely to be distinct at the subspecific level (although arguably at the species level), and they are included here provisionally as such.
Balaenoptera omurai was described by Wada et al. (2003). It was previously confounded with the Bryde’s whale and has been confirmed as having a separate and ancient lineage (Sasaki et al. 2006).

Clarke (2004) proposed recognition of a pygmy form of the fin whale as a subspecies, based on distribution, size and coloration. He resurrected the synonym *pachthonica* Burmeister, 1865 to apply to the subspecies: *B. physalus pachthonica*.

Branch et al. (2007) recognized the Chilean blue whale as an un-named subspecies of *B. musculus*. Subspecific status is also supported by molecular data (LeDuc et al. 2007).

In the odontocetes, *Mesoplodon traversii* (spade-toothed whale) has been recognized as the senior synonym for *M. bahamondi* (Bahamonde’s beaked whale) (van Helden et al. 2002). The first complete specimen was recently described from a stranding on the North Island of New Zealand (Thompson et al. 2012). *Mesoplodon perrini* was described by Dalebout et al. (2002). Dalebout et al. (2014) resurrected *Mesoplodon hotaula* Deraniyagala, 1963, a species closely similar to *M. ginkgodens*.

We recognize one species of *Inia* with two subspecies: *I. geoffrensis geoffrensis* (Blainville, 1817) and *I. g. boliviensis* (d’Orbigny, 1834). *I. g. boliviensis* is found in the Bolivian Amazon basin and overlaps with other *Inia* in all morphological characters (da Silva, 1994; Ruiz-Garcia et al. 2006). However, molecular genetic evidence from mitochondrial DNA (mtDNA) and nuclear introns (Banguera-Hinestroza et al. 2002; Ruiz-Garcia et al. 2008) suggested these two subspecies are on separate evolutionary trajectories and deserve recognition as phylogenetic species. Hollatz et al. (2011) estimated that *I. g. boliviensis* has been reproductively isolated for 3.2 million years. However, these studies used geographically disparate samples, with a significant gap in sampling of *Inia* habitat between the Teotonio Rapids, hypothesized to be the barrier to gene flow for *I. g. boliviensis*, and the samples used to represent *I. g. geoffrensis*. Gravena et al. (2014), with much better sampling of the Madeira River system, including samples from immediately above and below the Teotonio Rapids, found that in fact these rapids did not appear to obstruct gene flow on an evolutionary scale. Thus, the conclusion that the Bolivian *Inia* above the Teotonio Rapids possessed unique mtDNA (a major line of evidence for recognizing species-level distinctness of *I. boliviensis*) was not supported by more extensive sampling (i.e., the initial appearance of separation was an artifact of poor sampling). Therefore, only the subspecies *Inia geoffrensis boliviensis* is retained, although given the newer evidence for a lack of isolation of the dolphins above the Teotonio Rapids (Gravena et al. 2014) and the lack of robust sampling, the strength for subspecies status is weakened. Another new species, *Inia araguaiaensis*, was described by Hrbek et al. (2014) from the Araguaia River, which is not connected to the Amazon and Siciliano et al. (2016) extended the known range of *I. araguaiaensis* further north to Marajó Bay, Brazil through mtDNA analysis of three stranded specimens. Hrbek et al. (2014) only examined samples from two extremes of the distribution of *Inia*, so it is unclear if the molecular differences observed represented real species-level separation or were due to sampling from two locations separated by a large distance. Diagnostic osteological differences were also reported (Hrbek et al. 2014). However, because this study was based on the examination of very few specimens (only 2 for the new species and only 9 for *I. geoffrensis*) and did not account for effects of sexual dimorphism within the species, the authors’ conclusions are not persuasive. In light of these arguments, the species here remains unlisted provisionally. Hrbek et al. (2014) did not recognize *I. g. humboldtiana*. Continued research on the taxonomic status of all *Inia* forms is necessary.

Previous editions of this list recognized two globally distributed species of common dolphins: the short-beaked common dolphin *Delphinus delphis* and the long-beaked common dolphin *Delphinus capensis* as proposed by Heyning and Perrin (1994). However, evidence that *D. capensis* thus considered is a polyphyletic taxon has been accumulating for some time. The long-beaked condition is apparently a convergent character state induced by regional ecology. In some regions, long-beaked common dolphins are genetically more closely related to short-beaked common dolphins than to long-beaked common dolphins in other regions (e.g., see Natoli et al. 2006). Cunha et al. (2015) summarized the relevant data and analyses, along with additional molecular data and analysis, and recommended that *Delphinus capensis* not be further used as proposed by Heyning and Perrin (1994). That recommendation is followed here. Cunha et al. (2015) noted that because the sympatric/parapatric long-beaked and short-beaked common dolphins off California in the Eastern North Pacific (ENP) appear not to interbreed, perhaps the ENP long-beaked common dolphins might be recognized as a separate species *D. bairdii* Dall,1873 (as advocated by Banks and Brownell (1969) based on the long-beaked condition). However, the molecular analysis for the ENP (Rosel et al. 1994) did not
include common dolphins from the contiguous regions to the south in the eastern tropical and eastern South Pacific. Pending a more complete global review and revision of the common dolphins, the long-beaked ENP form is considered here provisionally as a subspecies *D. delphis bairdii* following the usage of Hershkovitz (1966). *Delphinus capensis* Gray, 1828 from South Africa remains in the synonymy of *Delphinus delphis* Linnaeus, 1758. The long-beaked common dolphin of the Indian Ocean is retained as a subspecies *D. delphis tropicalis*.

Based on a combined analysis of molecular genetic and morphological data, Mendez et al. (2013) proposed recognizing four species of *Sousa* (the humpback dolphins): the previously here-listed *S. teuszii* and *S. chinensis* plus *S. plumbea* and a new un-named species from the waters of northern Australia that was originally proposed by Frère et al. (2008, 2011) based on molecular data. A drawback of the phylogenetic analyses by Mendez et al. (2013) is that there was only one sample from the area of supposed sympatry of *S. plumbea* and *S. chinensis* and very low coverage of the Indo-Malay region (n=5). The two species are listed here provisionally, pending the outcome of further analysis including more samples from those areas. The new species from Australia has been given the name *Sousa sahulensis* (Jefferson and Rosenbaum 2014).

The new subspecies *Sousa chinensis taiwanensis* was described by Wang et al. (2015).

The Burrunan dolphin *Tursiops australis*, recently described by Charlton-Robb et al. (2011), is not included here; its basis is questionable because of several potential problems: 1) the specimens were compared morphologically only with bottlenose dolphins from Australia; 2) despite the small sample sizes, the series overlapped in all metric characters and separation was possible only with multivariate analysis (which commonly resolves geographical forms within a species, e.g., see Perrin et al. (1999) and Perrin et al. (2011) for *Stenella longirostris* and *Tursiops truncatus*, respectively); 3) comparisons of external morphology and non-metric characters were made only with *T. truncatus*, to the exclusion of *T. aduncus*; and 4) support for important nodes in molecular trees suggesting phylogenetic separation was low. A rigorous re-evaluation of the relevant data and arguments is needed. Wickert et al. (2016) and Costa et al. (2016) examined morphological characteristics of *Tursiops* specimens from the western South Atlantic and recommended species and subspecies status, respectively, for the larger coastal form found in the sampled region. We provisionally recognize the subspecies *T. t. gephyreus* Lahille 1908, for this larger coastal form and apply the English name Lahille’s bottlenose dolphin. Improved geographic sampling and improved objectivity in hypothesis testing is needed to fully resolve the taxonomy of *Tursiops* in this region. In particular, further work is needed to 1) better identify the distribution of the *gephyreus* form, 2) compare the morphology and molecular genetics of the *gephyreus* form to the type specimen of *T. truncatus*, and 3) determine its phylogenetic relationship to coastal and offshore *Tursiops* in the western North Atlantic.

Recognition of the Black Sea bottlenose dolphin is now well-supported by molecular genetic data (Viaud-Martinez et al. 2008), as is the Black Sea common dolphin (Natoli et al. 2008). *Lagenorhynchus* is widely considered a polyphyletic taxon containing morphologically convergent species (Cipriano 1997, LeDuc et al. 1999, McGowen 2011), and application of the genera *Sagmatias* (for *L. obscurus, obliquidens, australis* and *cruciger*) and *Leucopleurus* (for *L. acutus*) have been suggested as appropriate and used by some workers. However, there is continuing disagreement about whether *australis* and *cruciger* should be included in *Cephalorhynchus* (which would necessitate a new genus for *obliquidens* and *obscurus*, as *australis* is the type species for the genus *Sagmatias*) and about whether *albirostris* and *acutus* are sister species (which would obviate the need for *Leucopleurus*). We therefore provisionally retain all the species in *Lagenorhynchus* until there is greater clarity within these species. Harlin-Cognato (2010) recognized *L. obscurus posidonia* (Peru/Chile). She also recognized *L. obscurus superciliosus* (Lesson and Garnot, 1826) for the New Zealand subspecies, but the species identity of the figure in Lesson and Garnot is in question, and we retain use of “un-named New Zealand subspecies.”

It has been noted repeatedly, most recently by Perrin et al. (2013), that the delphinine genera *Stenella* and *Tursiops* are paraphyletic and that at present there is no molecular or morphological basis for satisfactory resolution of phylogenetic relationships in the subfamily. A possible solution would be to return all the species in *Tursiops*, *Sousa*, and *Stenella* to *Delphinus*, the genus in which they were first described, and place *Lagenodelphis hosei* there as well. However, considering that this would obscure the clear close relationship of the present *Sousa* species, the status quo is maintained here provisionally, pending the outcome of more definitive morphological and molecular studies. Eventually a more natural classification will emerge.
Perrin et al. (1999) established the subspecies *Stenella longirostris roseiventris*.

The Irrawaddy dolphin was split into *O. brevirostris* and *O. heinsohni*, the Australian snubfin dolphin (Beasley et al. 2005).

Krahn et al. (2004) recognized two un-named subspecies of killer whales, the resident and transient forms. The Southern Resident Killer Whale was designated in 2005 as Endangered under the U.S. Endangered Species Act, as a distinct population segment (DPS) of the resident killer whale taxon, recognized as a subspecies distinct from the transient killer whale. Other forms of killer whales in the North Pacific, North Atlantic and Antarctic Ocean may warrant recognition as separate subspecies or even species, but the taxonomy has not yet been fully resolved (Morin et al. 2010; Foote et al. 2009, 2013).

Wang et al. (2008) and Jefferson and Wang (2011) established *Neophocaena asiaeorientalis* as a full species distinct from the *N. phocaenoides*, with two subspecies. Viaud-Martinez et al. (2007) concluded based on morphological and molecular genetic evidence that *Phocoena phocoena relicta* is a distinct subspecies. Fontaine et al. (2014) suggested harbor porpoises off Mauritania and the Iberian Peninsula should be listed as a separate subspecies, *P. p. meridionalis*, but without a formal description with all the elements required by the ICZN, this name is a nomen nudum. *P. p. un-named subsp.* has been added to the list until such time as a formal description is published.

We list the baiji *Lipotes vexillifer* as “possibly extinct” in conformance with the IUCN Red List, although extinction seems a certainty.

In the Sirenia, subspecies of the dugong are not currently recognized (Domning, 1996). However, no in-depth study has been undertaken to address the issue of subspecies.

For review of species concepts, see Reeves et al. (2004), Orr and Coyne (2004), de Queiroz (2007) and Perrin (2009). The subspecies (including for the Carnivora and Sirenia) are as recognized by Rice (1998), with the above-noted changes.

Corrections and comments should be directed to the Committee on Taxonomy (patricia.rosel@noaa.gov). Divergent opinions by members of the Committee on particular taxonomic questions are given in the footnotes.

Order Carnivora

Family Ursidae

Ursus maritimus Phipps, 1774. Polar bear

Family Mustelidae

Enhydra lutris (Linnaeus, 1758). Sea otter

E. l. lutris (Linnaeus, 1758). Western sea otter

E. l. nereis (Merriam, 1904). Southern sea otter

Lontra felina (Molina, 1782). Chungungo, marine otter

Neovison macrosdon (Prentis, 1903). Sea mink (extinct)
PINNIPEDIA (eared seals, sea lions, walrus, earless seals; 37 species, of which 2 extinct)

Family Otariidae (eared seals and sea lions; 15 species, of which 1 extinct)

Arctocephalus australis (Zimmermann, 1783). South American fur seal

* A. *australis* (Zimmermann, 1783). South American fur seal

* A. *australis* un-named subspecies. Peruvian fur seal

Arctocephalus forsteri (Lesson, 1828). Long-nosed fur seal, New Zealand fur seal

Arctocephalus galapagoensis Heller, 1904. Galapagos fur seal

Arctocephalus gazella (Peters, 1876). Antarctic fur seal

Arctocephalus philippii (Peters, 1866). Juan Fernandez fur seal

* A. *philippii* (Peters, 1866). Juan Fernandez fur seal

* A. *philippii* townsendi (Merriam, 1897). Guadalupe fur seal

Arctocephalus pusillus (Schreber, 1775). Cape fur seal

* A. *pusillus* (Schreber, 1775). Cape fur seal

* A. *pusillus* doriferus Wood Jones, 1925. Australian fur seal

Arctocephalus tropicalis (Gray, 1872). Subantarctic fur seal

Callorhinus ursinus (Linnaeus, 1758). Northern fur seal

Eumetopias jubatus (Schreber, 1776). Steller sea lion, northern sea lion

* E. *jubatus* (Schreber, 1776). Western Steller sea lion

* E. *jubatus* monteriensis (Gray, 1859). Loughlin’s Steller sea lion

Neophoca cinerea (Peron, 1816). Australian sea lion

Otaria byronia (Blainville, 1820). South American sea lion

Phocarctos hookeri (Gray, 1844). New Zealand sea lion, Hooker’s sea lion

Zalophus californianus (Lesson, 1828). California sea lion

Zalophus japonicus (Peters, 1866). Japanese sea lion (extinct)

Zalophus wollebaeki Sivertsen, 1953. Galapagos sea lion
Family Odobenidae

Odobenus rosmarus (Linnaeus, 1758). Walrus

O. r. divergens (Illiger, 1815). Pacific walrus

O. r. rosmarus (Linnaeus, 1758). Atlantic walrus

Family Phocidae (earless seals; 19 species, of which 1 extinct)

Cystophora cristata (Erxleben, 1777). Hooded seal

Erignathus barbatus (Erxleben, 1777). Bearded seal

E. b. barbatus (Erxleben, 1777). Atlantic bearded seal

E. b. nauticus (Pallas, 1881). Pacific bearded seal

Halichoerus grypus (Fabricius, 1791). Gray seal

H. g. grypus (Fabricius, 1791). Baltic gray seal

H. g. atlantica. Nehring, 1866. Atlantic gray seal

Histriophoca fasciata (Zimmerman, 1783). Ribbon seal

Hydrurga leptonyx (Blainville, 1820). Leopard seal

Leptonychotes weddellii (Lesson, 1826). Weddell seal

Lobodon carcinophaga (Hombron and Jacquinot, 1842). Crabeater seal

Mirounga leonina (Linnaeus, 1758). Southern elephant seal

Mirounga angustirostris (Gill, 1866). Northern elephant seal

Monachus monachus (Hermann, 1779). Mediterranean monk seal

Neomonachus tropicalis (Gray, 1850). Caribbean monk seal, West Indian monk seal (extinct)

Neomonachus schauinslandi (Matschie, 1905). Hawaiian monk seal

Ommatophoca rossii Gray, 1844. Ross seal

Pagophilus groenlandicus (Erxleben, 1777). Harp seal

Phoca vitulina Linnaeus, 1758. Harbor seal, common seal

P. v. vitulina Linnaeus, 1758. Atlantic harbor seal
Phoca vitulina (Doutt, 1942). Ungava harbor seal

Phoca vitulina richardii (Gray, 1864). Pacific harbor seal

Phoca largha Pallas, 1811. Spotted seal, largha seal

Pusa hispida (Schreber, 1775). Ringed seal

P. h. hispida (Schreber, 1775). Arctic Ringed seal

P. h. botnica (Gmelin, 1788). Baltic ringed seal

P. h. ochotensis (Pallas, 1811). Okhotsk ringed seal

P. h. ladogensis (Nordquist, 1889). Lake Ladoga seal

P. h. saimensis (Nordquist, 1889). Saima seal

Pusa caspica (Gmelin, 1788). Caspian seal

Pusa sibirica (Gmelin, 1788). Baikal seal

Order CETARTIODACTYLA (artiodactyls and cetaceans)

CETACEA (cetaceans; 89 species, of which 1 possibly extinct)

MYSTICETI (baleen whales, 14 species)

Family Balaenidae (right whales, 4 species)

Balaena mysticetus Linnaeus, 1758. Bowhead whale, Greenland whale

Eubalaena glacialis (Müller, 1776). North Atlantic right whale

Eubalaena japonica (Lacépède, 1818). North Pacific right whale

Eubalaena australis (Desmoulins, 1822). Southern right whale

Family Neobalaenidae

Caperea marginata (Gray, 1846). Pygmy right whale

Family Eschrichtiidae

Eschrichtius robustus (Lilljeborg, 1861). Gray whale

Family Balaenopteridae (rorquals, 8 species)
Balaenoptera acutorostrata Lacépède, 1804. Common minke whale

B. a. acutorostrata Lacépède, 1804. North Atlantic minke whale

B. a. scammoni Demérè, 1986. North Pacific minke whale

B. a. un-named subsp. Dwarf minke whale

Balaenoptera bonaerensis Burmeister, 1867. Antarctic minke whale

Balaenoptera borealis Lesson, 1828. Sei whale

B. b. borealis Lesson, 1828. Northern sei whale

B. b. schlegelii (Flower, 1865). Southern sei whale

Balaenoptera edeni Anderson, 1879. Bryde’s whale

B. e. brydei Olsen, 1913. Offshore Bryde’s whale

B. e. edeni Anderson, 1879. Eden’s whale

Balaenoptera musculus (Linnaeus, 1758). Blue whale

B. m. musculus (Linnaeus, 1758). Northern blue whale

B. m. intermedia Burmeister, 1871. Antarctic blue whale

B. m. indica Blyth, 1859. Northern Indian Ocean blue whale

B. m. brevicauda Ichihara, 1966. Pygmy blue whale

B. m. un-named subsp. Chilean blue whale.

Balaenoptera omurai Wada, Oishi and Yamada, 2003. Omura’s whale

Balaenoptera physalus (Linnaeus, 1758). Fin whale

B. p. patachonica Burmeister, 1865. Pygmy fin whale

B. p. physalus (Linnaeus, 1758). Northern fin whale

B. p. quoyi (Fischer, 1829). Southern fin whale

Megaptera novaeangliae (Borowski, 1781). Humpback whale

M. n. australis (Lesson, 1828). Southern humpback whale

M. n. kuzira (Gray, 1850). North Pacific Humpback whale
M. n. novaeangliae (Borowski, 1781). North Atlantic humpback whale

ODONTOCETI (toothed whales, dolphins and porpoises: 75 species, of which one possibly extinct)

Family Physeteridae

Physeter macrocephalus Linnaeus, 1758. Sperm whale, cachalot

Family Kogiidae

Kogia breviceps (Blainville, 1838). Pygmy sperm whale

Kogia sima (Owen, 1866). Dwarf sperm whale

Family Ziphiidae (beaked whales, 22 species)

Berardius arnuxii Duvernoy, 1851. Arnoux’s beaked whale

Berardius bairdii Stejneger, 1883. Baird’s beaked whale

Hyperoodon ampullatus (Forster, 1770). Northern bottlenose whale

Hyperoodon planifrons Flower, 1882. Southern bottlenose whale

Indopacetus pacificus (Longman, 1926). Longman’s beaked whale, tropical bottlenose whale

Mesoplodon bidens (Sowerby, 1804). Sowerby’s beaked whale

Mesoplodon bowdoini Andrews, 1908. Andrews’ beaked whale

Mesoplodon carlhubbsi Moore, 1963. Hubbs’ beaked whale

Mesoplodon europaeus (Gervais, 1855). Gervais’ beaked whale

Mesoplodon ginkgodens Nishiwaki and Kamiya, 1958. Ginkgo-toothed beaked whale

Mesoplodon grayi von Haast, 1876. Gray’s beaked whale

Mesoplodon hectori (Gray, 1871). Hector’s beaked whale

Mesoplodon hotaula Deraniyagala, 1963. Deraniyagala’s beaked whale

Mesoplodon layardi (Gray, 1865). Strap-toothed beaked whale, Layard’s beaked whale

Mesoplodon mirus True, 1913. True’s beaked whale

Mesoplodon peruvianus Reyes, Mead and Van Waerebeek, 1991. Pygmy beaked whale
Mesoplodon stejnegeri True, 1885. Stejneger’s beaked whale

Mesoplodon traversii (Gray, 1874). Spade-toothed whale

Mesoplodon densirostris (Blainville, 1817). Blainville’s beaked whale

Tasmacetus shepherdi Oliver, 1937. Shepherd’s beaked whale, Tasman beaked whale

Ziphius cavirostris G. Cuvier, 1823. Cuvier’s beaked whale, goose-beaked whale

Family Platanistidae

Platanista gangetica (Lebeck, 1801). South Asian river dolphin, Indian river dolphin

P. g. gangetica (Lebeck, 1801). Susu, Ganges river dolphin

P. g. minor Owen, 1853. Bhulan

Family Iniidae

Inia geoffrensis (Blainville, 1817). Amazon river dolphin

I. g. boliviensis (d’Orbigny, 1834). Bolivian bufeo

I. g. geoffrensis (Blainville, 1817). Common boto

Family Lipotidae

Lipotes vexillifer Miller, 1918. Baiji, Yangtze river dolphin – possibly extinct

Family Pontoporiidae

Pontoporia blainvillei (Gervais and d’Orbigny, 1844). Franciscana, toninha.

Family Monodontidae

Delphinapterus leucas (Pallas, 1776). Beluga, white whale

Monodon monoceros Linnaeus, 1758. Narwhal

Family Delphinidae (37 species)

Cephalorhynchus commersonii (Lacépède, 1804). Commerson’s dolphin

C. c. commersonii (Lacépède, 1804). Commerson’s dolphin

C. c. kerguelenensis Robineau, Goodall, Pichler and C. S. Baker, 2007. Kerguelen Islands Commerson’s dolphin

Cephalorhynchus eutropia (Gray, 1846). Chilean dolphin
Cephalorhynchus heavisidii (Gray, 1828). Heaviside’s dolphin, Haviside’s dolphin

Cephalorhynchus hectori (Van Bénédén, 1881). Hector’s dolphin

C. h. hectori (Van Bénédén, 1881). South Island Hector’s dolphin

C. h. maui A. Baker, Smith and Pichler, 2002. Maui’s dolphin, North Island Hector’s dolphin

Delphinus delphis Linnaeus, 1758. Common dolphin, saddleback dolphin

D. d. delphis Linnaeus, 1758. Common dolphin

D. d. bairdii Dall, 1873. Eastern North Pacific long-beaked common dolphin

D. d. ponticus Barabash, 1935. Black Sea common dolphin

D. d. tropicalis van Bree, 1971. Indo-Pacific common dolphin

Feresa attenuata Gray, 1874. Pygmy killer whale

Globicephala macrorhynchus Gray, 1846. Short-finned pilot whale

Globicephala melas (Traill, 1809). Long-finned pilot whale

G. m. edwardii (A. Smith, 1834). Southern long-finned pilot whale

G. m. melas (Traill, 1809). North Atlantic long-finned pilot whale

G. m. un-named subsp. North Pacific long-finned pilot whale (extinct)

Grampus griseus (G. Cuvier, 1812). Risso’s dolphin, grampus

Lagenodelphis hosei Fraser, 1956. Fraser’s dolphin

Lagenorhynchus acutus (Gray, 1828). Atlantic white-sided dolphin

Lagenorhynchus albirostris (Gray, 1846). White-beaked dolphin

Lagenorhynchus australis (Peale, 1848). Peale’s dolphin

Lagenorhynchus cruciger (Quoy and Gaimard, 1824). Hourglass dolphin

Lagenorhynchus obliquidens Gill, 1865. Pacific white-sided dolphin

Lagenorhynchus obscurus (Gray, 1828). Dusky dolphin

L. o. fitzroyi (Waterhouse, 1838). Fitzroy’s dolphin

L. o. obscurus (Gray, 1828). African dusky dolphin
L. o. posidonia (Philippi, 1893). Peruvian/Chilean dusky dolphin

L. o. un-named subsp. New Zealand dusky dolphin

Lissodelphis borealis (Peale, 1848). Northern right-whale dolphin

Lissodelphis peronii (Lacépède, 1804). Southern right-whale dolphin

Orcaella brevirostris (Owen in Gray, 1866). Irrawaddy dolphin, pesut

Orcaella heinsohni Beasley, Robertson and Arnold, 2005. Australian snubfin dolphin

Orcinus orca (Linnaeus, 1758). Killer whale, orca

O. o. un-named subsp. ENP resident killer whale

O. o. un-named subsp. ENP transient killer whale, Bigg’s killer whale

Peponocephala electra (Gray, 1846). Melon-headed whale, Electra dolphin

Pseudorca crassidens (Owen, 1846). False killer whale

Sousa teuszii (Kükenthal, 1892). Atlantic humpback dolphin

Sousa chinensis (Osbeck, 1765). Indo-Pacific humpback dolphin

S. c. chinensis (Osbeck, 1765). Chinese humpback dolphin

S. c. taiwanensis Wang, Yang and Hung, 2015. Taiwanese humpback dolphin

Sousa plumbea (G. Cuvier, 1829). Indian Ocean humpback dolphin

Sousa sahulensis Jefferson and Rosenbaum, 2014. Australian humpback dolphin, Sahul dolphin

Sotalia fluvatilis (Gervais and Deville in Gervais, 1853). Tucuxi

Sotalia guianensis (Van Bénedén, 1864). Guiana dolphin, costero

Stenella attenuata (Gray, 1846). Pantropical spotted dolphin

S. a. attenuata (Gray, 1846). Offshore pantropical spotted dolphin

S. a. graffmani (Lönnerberg, 1934). Coastal pantropical spotted dolphin

Stenella clymene (Gray, 1850). Clymene dolphin

Stenella coeruleoalba (Meyen, 1833). Striped dolphin

Stenella frontalis (G. Cuvier, 1829). Atlantic spotted dolphin
Stenella longirostris (Gray, 1828). Spinner dolphin

S. l. centroamericana Perrin, 1990. Central American spinner dolphin

S. l. longirostris (Gray, 1828). Gray’s spinner dolphin

S. l. orientalis Perrin, 1990. Eastern spinner dolphin

S. l. roseiventris (Wagner, 1846). Dwarf spinner dolphin

Steno bredanensis (G. Cuvier in Lesson, 1828). Rough-toothed dolphin

Tursiops aduncus (Ehrenberg, 1833). Indo-Pacific bottlenose dolphin

Tursiops truncatus (Montagu, 1821). Common bottlenose dolphin

T. t. ponticus Barabash-Nikiforov, 1940. Black Sea bottlenose dolphin

T. t. truncatus (Montagu, 1821). Common bottlenose dolphin

T. t. gephyrus Lahille, 1908. Lahille’s bottlenose dolphin

Family Phocoenidae (porpoises, 7 species)

Neophocaena phocaenoides (G. Cuvier, 1829). Indo-Pacific finless porpoise

Neophocaena asiaeorientalis (Pilleri and Gihr, 1972). Narrow-ridged finless porpoise

N. a. asiaeorientalis (Pilleri and Gihr, 1972). Yangtze finless porpoise

N. a. sunameri Pilleri and Gihr, 1975. East Asian finless porpoise, sunameri

Phocoena dioptrica Lahille, 1912. Spectacled porpoise

Phocoena phocoena (Linnaeus, 1758). Harbor porpoise

P. p. phocoena (Linnaeus, 1758). Atlantic harbor porpoise

P. p. vomerina (Gill, 1865). Eastern Pacific harbor porpoise

P. p. relictua Abel, 1905. Black Sea harbor porpoise

P. p. un-named subsp. Western Pacific harbor porpoise

P. p. un-named subsp. Afro-Iberian harbor porpoise

Phocoena sinus Norris and McFarland, 1958. Vaquita, Gulf of California harbor porpoise

Phocoena spinipinnis Burmeister, 1865. Burmeister’s porpoise
Phocoenoides dalli (True, 1885). Dall’s porpoise, Dall porpoise

P. d. dalli (True, 1885). Dalli-type Dall’s porpoise

P. d. truei Andrews, 1911. Truei-type Dall’s porpoise

ORDER SIRENIA (sirenians, 5 species, of which 1 extinct)

Family Trichechidae

Trichechus inunguis (Natterer, 1883). Amazonian manatee

Trichechus manatus Linnaeus, 1758. West Indian manatee

T. m. latirostris (Harlan, 1824). Florida manatee

T. m. manatus Linnaeus, 1758. Antillean manatee

Trichechus senegalensis Link, 1795. West African manatee, African manatee

Family Dugongidae

Dugong dugon (Müller, 1776). Dugong

Hydrodamalis gigas (Zimmerman, 1780). Steller’s sea cow – extinct

Footnotes (dissenting opinions):

1 Use of Order Cetartiodactyla (artiodactyls and cetaceans) is favored by most evolutionary mammalogists working with molecular data. Some others, including many marine mammalogists and paleontologists, favor retention of Order Cetacea in the interest of taxonomic stability, despite rendering the retained Order Artiodactyla paraphyletic.

2 (from D. Rice) Baker et al. (2003) hold that there is no evidence that would support the classification of the right whales as more than a single biological species. [The three species are here recognized as phylogenetic species.]

3 (from T. Jefferson) The List should retain the eastern North Pacific (ENP) long-beaked common dolphin as a separate species of *Delphinus, D. bairdii* (as in Banks and Brownell 1969). The evidence for species status is published and is considerable, especially the molecular differences. Notwithstanding issues related to poor sampling from areas of potential sympatry further south, the balance of the evidence seems to support a lack of interbreeding throughout a very large region of overlap, along with clear ecological differences. In this view, the error by Heyning and Perrin (1994) was not in splitting out the ENP long-beaked common dolphins as a distinct species, but in assuming that the name *D. capensis* applied there and that all long-beaked populations of *Delphinus* belonged to *D. capensis*.

References

Last updated July 2017 by members of the Committee on Taxonomy:

- Patricia E. Rosel (Chair)
- C. Scott Baker
- Annalisa Berta
- Daryl J. Boness
- Robert L. Brownell, Jr.
- Daryl P. Domning
- R. Ewan Fordyce
- Angie Srembaa
Leave a comment.

You must be logged in to post a comment.